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Abstract—The plane-strain problem of a stress pulse striking an elastic circular cylindrical
inclusion embedded in an infinite elastic medium is treated. The method used determines
dominant stress singularities that arise at wave fronts from the focusing of waves refracted into
theinterior. Itis found that a necessary and sufficient condition for the existence of a propagating
stress singularity is that the incident pulse has a step discontinuity at its front. The asymptotic
wave front behavior of the first few P and SV waves to focus are determined explicitly and it is
shown that the contribution from other waves are less important. In the exterior, it is found that
in most composite materials the reflected waves have a singularity at their wave front which
depends on the angle of reflection. Also the wave front behavior of the first few singular trans-
mitted waves is given explicitly.

The analysis is based on the use of a Watson-type lemma, developed here, and Friedlander’s
method[5]. The lemma relates the asymptotic behavior of the solution at the wave front to the
asymptotic behavior of its Fourier transform on time for large values of the transform param-
eter. Friediander’s method is used to represent the solution in terms of angularly propagating
wave forms. This method employs integral transforms on both time and 6, the circumferential
coordinate. The § inversion integral is asymptotically evaluated for large values of the time
transform parameter by use of appropriate asymptotics for Bessel and Hankel functions and the
method of stationary phase. The Watson-type lemma is then used to determine the behavior of
the solution at singular wave fronts.

The Watson-type lemma is generally applicable to problems which involve singular loadings
or focusing in which wave front behavior is important. 1t yields the behavior of singular wave
fronts whether or not the singular wave is the first to arrive. This application extends Fried-
lander’s method to an interior region and physically interprets the resulting representation in
terms of ray theory.

NOMENCLATURE

Dimensional parameters:

A

radius of inclusion
dilatation wave velocity in inclusion
dilatation wave velocity outside inclusion
shear wave velocity in inclusion
shear wave velocity outside inclusion
radial coordinate
time
radial displacement
circumferential displacement
cartesian coordinate
cartesian coordinate
u#;  Lame’ elastic constants of material in inclusion

t Current address: University of Auckland, Auckland, New Zealand.
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Ay, g Lame’ elastic constants of material outside inclusion

Py density of material in inclusion

0 density of material outside inclusion
G, radial stress in inclusion

G, radial stress outside inclusion

o, stress amplitude of incident wave
T,0, shear stress in inclusion

T,0, shear stress outside inclusion.

Dimensionless parameters used in analysis (« = 1, 2):

¢ = 0,/Ca,

k = cyc,/cq,c,
k, =c¢yjc,

r =rfa

t =teyja

u, =u,la

v, =V,ja

Bo= /i

P =pi/p2

6, = 0,102 + 203)
oo =6o/(4; + 2113)
Tr9, = Tro, /(A2 + 2p13).

I. INTRODUCTION

The purpose of this investigation was to determine the nature of stress singularities that
occur when a plane dilatational wave impinges on an elastic circular cylindrical inclusion
embedded in an infinite elastic medium (Fig. 1). The specific incident pulse considered has a
step function time dependence. There has been interest in this problem in recent years
because its solution provides information about the behavior of individual fibers in a
composite material subjected to impact loading. Singular stresses which arise from focusing

Incident dilation
Wave front at 7=-l

Materiai 2

Materiai |

Fig. 1. Plane dilation wave propagating in the exterior region impinges on a circular
cylindrical inclusion.
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in fiber-reinforced composites can cause separation at the fiber-matrix interface and subse-
quent loss of load carrying capabilities in the composite.

Papers written on this problem are of two types. Papers by Kofl] and by Ting and Lee[2]
have analyzed this problem to determine the scattering effect of the inclusion on the incident
wave. Their eventual goal was to determine the dispersive effect of an array of such inclusions
on a stress pulse. While these papers briefly mention that focusing occurs, neither attempts
to analyze the nature of the resulting singularities that occur after focusing. Achenbach
et al.[3], however, are predominantly interested in focusing effects and analyze the first
wave front (dilatational) to focus by successive use of wave front analysis, similar to
geometric optics, and Poisson’s integral representation of the solution to the wave equation.

This investigation corroborates and extends the findings of Achenbach et al., by use of a
more general method of treating stress singularities. In addition to those wave fronts
treated by Achenbach et al., the wave fronts associated with the following waves were
investigated: the shear waves, the diffracted waves, the Stonely interface wave, reflected
exterior waves, transmitted (doubly refracted), exterior waves, and the interior refracted
wave after many reflections from the interface.

The method of analysis presented here uses a Watson-type lemma which relates the
asymptotic behavior of the solution at the wave front to the asymptotic behavior of its
Fourier transform on time for large values of the transform parameter. This lemma provides
a generalization of Knopoff and Gilbert’s technique[4]. Their method is essentially limited
to the first wave front to arrive while the method presented here treats subsequent wave
fronts as well. This is especially important in problems involving focusing as it is often the
later arriving waves which have focused and are singular. Also in the analysis, Friedlander’s
technigue[5] is used to represent the solution in terms of angularly propagating wave forms.
Friedlander’s technique has been used in exterior regions by Miklowitz[6], Peck and
Miklowitz{7], Gilbert[8], and Gilbert and Knopoff[9], to solve problems in which wave
pulses are scattered by cylindrical holes or rigid inclusions which cannot directly transmit
waves. Chen[10] uses a similar representation to solve a composite problem with an in-
clusion that transmits waves, but for a periodic excitation of high frequency rather than a
transient problem of the type analyzed here. The use of the aforementioned Watson-type
lemma translates the high frequency asymptotics of Chen’s type into wave front behavior
and is a vehicle for interpreting Friedlander’s representation for an interior region.

2. METHOD OF ANALYSIS

Statement of problem

The problem is formulated in terms of the displacement potentials ¢, and ¥, a = (1, 2),
where the subscripts 1 and 2 refer to the inner, r < 1, and outer, r > 1, solids, respectively

(see Fig. 1). The radial circumferential displacements are related to ¢, and ¥, by the
equations

“ =% T 70 (1.2)

, (1.b)
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where all quantities have been nondimensionalized, their meaning specified under Nomen-
clature. Let L, be the differential wave operator defined as
¢ 1o 1 1 o?

Fs—+-— —.
eI Wi TER A

In the absence of body forces if the displacement potentials satisfy the wave equations

Ll¢] =Ly ,1=0 for r < 1, and
Li[¢,] = L, [¥,1 =0 forr>1,

where the dimensionless speeds of the dilatation (P type) and shear (S} type) waves are
c and c/k, in the inclusion,and 1 and k, ™ in the exterior region, then the displacements given
by equations (1.a) and (1.b) are a solution to the displacement equations of motion. In
addition, the stresses are related to the potentials by the relations

2c?p (__lad)l L %¢, 1 0‘1/1 1 azlr//l)
k2 or  r?o0*  f? r

(2)

=2V2 R
Ory =PV + rar r2 a0 rE a0 Trarae

Ap (2% 204, 1%, azwl Loy,
Tro, = n T2 2 v e
kl rordd r* 09 a0 or roor 3)
2 [ lop, 10%¢, 1oy, | azwz)
=V2 — —_——_—— Y — = Y5 — —5 el RY
or = V02 +k22( For 7207 a0 Trarde
o (2 ¢, 2 o<¢>2 1 3%, %, +16w2)
02 Tk 2 \raro0 P a0 rr 00> o roor)

In the exterior region, the solution is separated into scattered and incident parts, denoted
by the subscripts sc and inc, respectively. The incident part is specified to be the step stress
dilatation wave

Gine = %0 (t + rcos )2H(t + r cos 0) 4)

where H is the Heaviside step function. Perfect bonding takes place at the interface between
the two solids, i.e. the displacement and the radial and shear stresses are continuous at
r = 1. In the exterior domain the scattered waves are outgoing as r — oo, and in the interior
the solution is bounded as r — 0. Lastly, the solution is of period 2z in 0, the angular
dimension.

Types of waves generated

The waves that are generated when the pulse strikes the inclusion are of three types:
diffracted, reflected and refracted. Essentially, the diffracted wave fronts circle the inclusion
and propagate around the interface with some characteristic velocity. e.g. the dilatation
wave speed in the exterior region. The reflected waves are waves that are generated in the
exterior region when the incident dilatation wave strikes the interface. The refracted waves
occur when a wave from one media strikes the interface and generates waves in the second
media. For example, the dilatation wave refracted into the interior repeatedly reflects from
the interface and with each reflection spews refracted P and S} waves into the exterior (see
Fig. 2). The geometry and the analytical nature of these waves will be discussed in detail
in later sections.
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Snell’s Law sin; =l/c Reflected ray ( #)

Ist Externally
refracted ray

Incident
ray (#)

Refracted \\ /
ray after | refiection Refracted ray after
2 reflections

2nd Externally
refracted ray (P)

Fig. 2. Ray geometry of the refracted dilatation waves.

Friedlander’s representation of the solution

The following discussion parallels that of Miklowitz[6] and Peck and Miklowitz[7] who
solved the problem of a stress pulse striking a circular cavity. It differs from their discussion
in that Friedlander’s representation[5] has been extended to an interior region with the
accompanying complications that result from refraction. This representation may be
obtained by various means. The most direct method is the application of Poisson’s summa-
tion formula, which may be stated

> gm= 3 [ g@ema

h=—ao0 m=— 20

Applied to the Fourier series representation of a typical response function f(r, 8, f) this gives

fr.6.0="3% F(r,n, t)e"

= S S0+ 2mm 1) (5)
where
I o=  For e nei® de. (6)

S* is called the * wave form” of f, and the sum on m in equation (5) is called the “ wave
sum.”

The wave form of the response, f*, has a physical interpretation. This response corre-
sponds to the disturbance propagating outward in 6. As discussed in the previous section
these disturbances are of two types; diffracted and refracted waves. Both propagate along 6.

For 0’s beyond the wave front, f* is identically zero. Therefore, for finite ¢, the sum on m
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is finite. Thus, /* overlaps itself as it propagates in § and the wave sum is simply the sum
of the overlapping responses.

The present problem can be cast in the wave sum form by first finding the Fourier series
representation of the solution and then applying the above formulas; however, a more
direct method is as follows. Because the only given function in this problem is the incident
potential, once its expression in the wave sum form is found, one can simply require that
each term of the wave sum for ¢, ¥, and ¢, satisfy the wave equations

Lg% =Ly 93 =0 forr>1, —o0 <0<, @
L¢3 =Ly ¥t=0 forr<l, —oo<f<oo,

and that the boundary conditions are also satisfied term-by-termatr = l and — o0 < 8 < 0.
When the quiescent initial conditions are added together with the appropriate conditions as
r— oo and r— 0, it is clear that the wave sum of the solution to the above problem is the
solution to the original problem. To complete the formulation of the problem in wave sum
form, the wave form of the incident potential must be obtained. This is done after the

application of integral transforms.

Transformed solution
The Fourier transform on time will be denoted by

Fir 0, w) = f f(r, 6, e dt (8.2)
with the inversion integral
1 w +iy .
fir 0,6 = — j F(r, 0, w)e™ dew (8.b)
2n o+ iy
where y > 0. The subsequent Fourier transform on 6 is denoted by
Fr v, w) =f Fr, 0, w)e=™do (9.2)
with the inversion integral
F 1 © oz ive
Jir0.w) =5 | v o dn ©.b)

The double transform of the wave sum form of the incident potential is found by applying
the Poisson summation formula to the Fourier series of ¢,,,. From equation (4), ¢, =
Po(w)exp(—iwr cos B), where do(w) = o/(—iw).> The Fourier series may be written as

Bunclr 0, 0) = T Folw)e™ "52J (wor)e

n= =%k

where the integral definition of J,, the Bessel function of the first kind, has been used.
Then, applying equation (6) and taking the Fourier transform with respect to 8 yields

e _ © X = i N —
Gnclr, v, 0) = Po(w) f f e HRRIR g (wr)etC T dE db.
s — o0
Since J|,/(z) approaches zero exponentially as v — oo, the Fourier transform theorem gives

b (r, v, w) = 2ndolw)e VIR (wr). (10)

inc
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Applying the double Fourier transform to equations (7) for ¢, ¥ and ¢% gives the
equations for the Bessel functions. Keeping only those solutions that are outgoing as

r — oo and bounded as r — 0, one obtains

(E”f(r, v, w) = A(v, w)J |, (wr/c)
~lF'f(r, v, w) = B(v, w)J |, (wrk,/c)
dE(r, v, w) = C(v, ) H " (wr)
UEr, v, ) = D(v, w)H Y (wrk,)

where H{"(z) is the Hankel function of the first kind of order v.
The condition of perfect bonding at the interface is used to determine 4, B, C and D.
This condition implies that x = [4, B, C, D]” satisfies the matrix equation

[Elx = 2n$o(w>exp(' 'ZV L

i)y

where [E] = [e;. e,. €5, e,]

w , (o
ity ;)
. W
vy (;)

e =
,  kw? w\ 20, (o
M2 == ~)—“lel -
c C C 4
w w w
2ivp |2 (2) = (4
w[c '”'(C) '”'(0)}
(wk1
ivJyy c)
%J{vl(ﬂk_l)
C c
e, =

, wk wk,
- 21\'# l:lel (—()_1) - —C—l‘ ‘]lvl

)]

)

ki o? ki\ 2wk
|l () 2
wH'!V" (w)
_ {ivH P(w)
7 7@ - 0HH () ~ 20H ()

2iv[wH " (w) — HV(w)]

—ivH{P(wk,)

wk, HV" (wk,)

2iv[H(wky) — wkay HY (k)]

(2v? — W kHH N (wk,) — 2wk, HY (wk,)

€4 =
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(2\)2 — wzkg)JM(w) - 2(1)J|",|(a))
2wl (@) — J ), (w)]

which uniquely determines x. From symmetry, ¥, « = 1, 2, must be even functions of 0
and v} must be odd functions of 6 which implies u are even functions of v and 7¥ odd,
Hence, the absolute value signs in the above equations are dropped and, instead of (9.b).
the half range inversion integrals

1 ™.
i¥(r, 0, w) = ;f wX(r, v, w)cos(v0) dv

0

;o (12)
oX(r, 0, w) = —f #*(r, v, w)sin(vd) dv,
Yo
a =1, 2 are used where # and 3 are given by
R
r r (13)

~ v =~ d =~
vy =—¢r — 5.
r dr

A Watson-type lemma for the Fourier transform

Since the governing equations of dynamic elasticity are hyperbolic, any non-stationary
discontinuity must occur at wave fronts. In order for singularities from focusing to occur
the wave front must be converging. Often the first wave to arrive at a point is not singular
while a later wave caused, for example, by a reflection from a concave interface will have
converged and hence is singular when it arrives at the point. In this section a method is
prescribed for determining the wave front behavior of later arriving singular waves from the
integral expressions for the solution without completely evaluating the integrals in closed
form.

The solution near the wave fronts is obtained by applying a Watson-type lemma to its
Fourier time transform. Essentially, the lemma states that if f (w, x) is the Fourier transform
of f(t, x), X a position vector, and f(t, x) is the sum of several types of singular functions
that commonly occur in focusing, then the Fourier transform of the most singular one will
dominate asymptotically as w — oo. Furthermore, this result holds independent of the time
of arrival of the various singular waves that compose f(#, x). This is usuaily not true for
Watson’s lemma as it is normally stated for the Laplace transform of a function, which is
why it is not in general applicable to focusing problems. Preliminary analysis using stationary
phase approximations to find the high frequency behavior of the solution helped suggest
the types of singularities that are considered in the following lemma. Formally, Lemma:
Let the Fourier transform of the function f(¢, x) be defined as

flo,x) = f ) e (1, x) dt.

-0
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Suppose f(t, X) = Y #_, fu(t, X) where

Solt, X) = ag(X)(t — 14(x)) "°H(t — 15(x)), b€ (0, 1)

Lt x) = 01(’()(11("() - t)“"IIJ(tl(x) —|t), de (O,Il)
_fay(x)Injt — t,(x)] for |t—t,(x)| <1

falt, %) = ‘0,2 for |t —2t2(x)| > 1 ’

Sf3(t, X) = az(xX)H(t — t3(x))

Sa(t, x) = h(t, X)H(t — 1,(x)),

fa continuous and

ofa

- <M, fort<T and |h| <M,t", fort>T,

where M, is independent of x and ¢, and n = (0, 1, 2, ...). Then
_ay(x)[(1 — b a,(x)I(1 — d)e’"™
- (—i)t 7 (fw)' ™4

N naz(x)eiwtz(x) N 03(X)Ciwt3 (x)

~w —iw

flw, x)

+o(w™ ) as - oo.

To prove this the transforms of f;, f;, f> and f; are directly calculated. To show that
fa(@) is o(w ™), the transform of £, is integrated once by parts and the Reimann-Lebesque
lemma applied to the resulting integral for Im{w} > 0. The result holds by analytic con-
tinuation as Im{w} — 0 and w — + 0.

To use the above lemma it is assumed that the only singularities present are of the type
stated. Hence, if it is found, for example, that

m(r, 0 eiwro(r,o)
Fo,r o)~ 0T L,
w

the above lemma implies

ft,r, 0) ~ l”in(’i) In|t — t4(r, 6)]

as t - t,. This lemma is applied in the next chapter to the focusing of refracted waves in the
following manner. The Fourier inversion integral on 6 of equation (9.b) is used to give an
integral representation of the Fourier (time) transform of the solution. This integral is then
approximated asymptotically for large values of the parameter w using the method of
stationary phase, and the lemma applied to the resulting expressions.

3. WAVEFRONT ANALYSIS

Introduction

When the stress pulse strikes the inclusion, the discontinuity in material properties at the
interface and the shape of the inclusion cause the refracted rays to intersect either on their
first pass across the inclusion or on their second pass following a reflection from the inter-
face. Whether the first or the latter event occurs depends on the order of wave speeds of the
two materials. While there are six possible wave speed orders only two will be analyzed.
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They are:

() c>clky>1>1/k,<c>k,
(i) 1>1/k,>c>clkye=c<k;!.

Case (i) is of major interest in composite materials since it is usual for the fiber to be stiffer
than the matrix material and hence have faster wave speeds. For this reason it will be
analyzed in detail. Other wave speed orders can be analyzed using the methods devised
here for these two cases. Case (ii) is especially instructive since the wave speeds are ordered
completely differently from (i) and represent the opposite physical case of a soft inclusion
and will be briefly analyzed. For a detailed analysis of this case see Ref. [11].

A caustic is an envelope of converging rays. When a ray touches a caustic, focusing or
unfocusing can occur. When focusing occurs singular stresses are found at the wave front
after it has passed through the caustic. Since the balance of momentum at the wave front

yields
Ju;
n;lo; ;1= —-ps[at],

where jumps in field quantities are indicated by the usual brackets, and where #; is the jth
component of the unit vector normal to the surface of discontinuity and s is the speed of
the wave, the nature of the stress discontinuities may be disclosed by simply calculating the
discontinuities in the velocity vector.

The focusing of a refracted dilatation wave for ¢ < 1

Consider the directly refracted interior P wave when the speed c is less than the dimen-
sionless exterior P wave speed, 1. If « is the angle of incidence of the exterior P wave which
strikes the interface, the angle of refraction of the generated P wave is 8, where « and f§ are
related by Snell’s law, i.e.

¢ sino = sin f. (14)

Using simple geometry, the envelope of converging refracted P rays is depicted in Fig. 3
where, in addition to this caustic, three of its generating incident and refracted ray pairs
are shown.

¥
b\
a, Incident
dilatation rays
Refracted
dilatation a
rays
Caustic 48 A-
8,

csina, =sin B,

Fig. 3. Refracted dilatation rays and caustic for ¢ = 4, 27 > 6 > 0.
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Fig. 4. Regions R,, R, and R; forc= 4, § > 0.

Consider how the solution varies along a refracted ray that touches the caustic. Let 4,
be the distance traveled along the ray from the interface where it was generated to a point
(r, 0) and A, , be the distance along the ray to this caustic. From Fig. 3, it is clear that there
are three regions in which (r, 8) might lie:

(1) d,, <h;, and there is only one ray per point,

(2) d,, ~ hyp, aregion that includes the caustic as well as a transition zone where there

are two rays per point,

(3) d,, > h;p and only one ray per point.

Call the collections of all such points for all the directly refracted dilatation rays R;, R,
and R;, respectively. These regions are portrayed for 6§ > 0 and ¢ =1 in Fig. 4. When a
ray touches this caustic it picks up a singularity which propagates along its wave front.
Thus points in R, and R, see singular stresses from these refracted rays. Consider the
following mathematical analysis that verifies the above discussion and reveals the orders of
these singularities.

Let the part of the radial velocity, u%, that propagates with the dilatation speed ¢ be
denoted as it ;. From the elementary properties of the wave equation, contributions from

* propagate with this velocity while contributions from ¢/} propagate with the shear velocity
¢/k,, thus equations (13) and (11) imply

Ty iw2 , [or
Uit v, w) = — - A(v, w)J, ~ ) (15)
Equation (12) implies
ok 3 1 oo?*
ul(dil)(r’ 09 C()) == J Ul(d”)(r, v, (L))COS vO dv.
o
The asymptotic behavior of this quantity for large  is of interest. Once it is known, the

Watson-type lemma for the Fourier time transform will be used. For o =, + iw,,
w, > 0 and w, large, the change of variable v = sw yields

- 1 ~ . .
Tain(r, 0. ©) = 5= [ olfu(r s0. @)[e" + e~ ] ds, (16)
Cs
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where C; is a line from the origin to oo inclined at an angle of —tan™' w,/w;. Consider the
contribution from the term ¢** in (16), which will be called #%(;,, i.e.

_ 1 = .
WG, 0, ) = 5> fc ot} g, so, w)e™? ds. (17)
The reason for neglecting the contribution of e~ **? in equation (16) will be made clear later.
As w, = o, C; is equivalent to a path along the real s-axis which is indented below any
poles of the integrand that might lie on the real s-axis. With this understanding, equation
(17) is written

_ 1 r* = ,
W Gin(r, 0, @) = o j Wl gin(r, sw, w)e"? ds. (18)
0

In the following discussion this integral is evaluated asymptotically for large w in a manner
similar to that used by Chen[10]. For w large, the asymptotics given in Ref. [11] imply
that for s¢[0, min(1, 1/c)), i.e. 0 < s < min(l, 1/c) = smaller of either 1 or 1/c¢, A(sw, w) may
be expanded in a geometric series, each term of which corresponds to a different refracted
ray. It is found, for s¢[0, min(1, 1/¢)), that

A(sw, w) ~ Ao(s, o)1 = 61,(s)M;,(s) + I] (19)
where

_ 2na(my (s)my (N2 ag(s)explica( —sm/2 + Yy,e(s) — Yy (5))]

Ao(s, ®) —iw? d10(s)

ao(s) = de, s (my e + my,) — 8s*(my, + pmy, ;) — 2e,(my 1o e, — my, pey)
+ 4us*(my ey — myey),
810(8) = (mypemy e + 87)e3 + ds7mymy) + pl—2522my jcmy e + €)2mymy, + e,)
+ (klkz

2
T) (myjemy, + mumy )} + (el + 45 my o my  Nmymy, + 57),
11 010 = (—=mypemmy o + 5°)(e3 + 4P mumy,) + p(25°2my o my, e + €)2mumy, + €,)
k 2
+ (%) (mymy e — my my )] + piet — "'52’"1/::'771\-,/c)(m1mk2 + 5%),
Wx(s) = mx(s) -5 COS—I(S/X)’
M (s) = —iexp(2iwy (s)),
- k2
mys) =/ |x* =5, &= (2s2 - —21), e, = (25s* — k).
¢
It will be shown that in equation (19), 4, corresponds to the directly refracted dilatation
wave before it reflects for the first time from the interface. —A4, é,,M,,. corresponds to
the same wave after one reflection but before the second reflection, and I'; corresponds to

other refracted waves. In anticipation of this physical meaning, let &}, be the contribution
to the velocity from 4, where p refers to dilatation. Using the asymptotic forms for the
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Bessel functions given in Ref. [11], equations (15, 18 and 19) imply

min(r/c,1) H ( in/4
— (8, 1r)e
uy,(r, 0, w)~J LA

0 o

[e'far — jei*faz] ds (20)

where

00 ay(8) (my,.mymu\?
Hlp(s;r)= 0“0 ( 1/c’1 r/c) ,

r6y0(5) 2n

Suls3 1, 0) = = T+ 0+ Y1els) = Yu(s) + iy,

Jurls3 1, 8) = = T4 50 4+ Y1 1e8) = Ya(8) + Uiyels).

Consider the contribution from the second term in the above integrand. A point of station-
ary phase, so, exists provided fj,(sq; r, 8) =0, i.e. since ¥.(s) =sin™'(s/x) ~ n/2, where
0 < sin~!(s/x) < n2 for 0 < s/x < 1, then

~y+pf~-a+6=0 (2D
where

S
SoC, 7y =sin l_or_C . (22)

1

o =sin"" s, B =sin"?

Equation (21) is satisfied if # > 0 and when s, is such that «, f and y have the geometric
relationship shown in Fig. 5. Note that o« and g satisfy Snell’s law, equation (14). Further-
more,

d,
Ja(So5 1, 0) = f +di — 1 =1,(r,0), (23)

where d; and 4, , have the physical meanings illustrated in Fig. 5 and hence ¢, , is the time of
arrival of the refracted P wave at the point (r, 8), thus justifying the nomenclature that has

Refracted
P ray

Incident # ray:

Fig. 5. Refracted dilatation ray for ¢ < 1, d;, < cos B.
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been used. The mathematical restriction that 0 < s, < min(r/c, 1) physically restricts the
incident ray to the positive illuminated zone 0 < « < #/2, and restricts the refracted ray so
that 4,, < cos f. Since

1
¢ ¢ <0, fore<l, 24)

"
i (Sg; 1, 0) = — —
aso3r.0) rcosy cosf cosu

the method of stationary phase implies the contribution from this term is

“iHlp(So;r)\/ 2n iwty p(r,0)
e'@helrs 25
® —fi{so5 1, 6) 3)

for d;, <cos fand 6 > 0.
The first term in the integrand of equation (17) has a point of stationary phase, s,,
provided fy, (so; 7, 0) =0, i.e,

Yy —n+B—a+0=0 (26)
where « and f are as in equation (22), 8 > 0 and
y = sin" s, cfr). n

The restriction that s, < r/c implies d;, > cos f. The angles « and § have the same physical
interpretation as before and 7' is the supplement of y. Again f;, (so; r, 0) =t,,. However,

f;x”,(soﬂ, 0) ':(hlp_dlp)/ilp’ (28)
where

hy, = cos? Bf(cos B — c cos &) > cos B,
Ayp = cos ®cos y cos ff(cos f — ccos a) >0, forc <1,

and can be positive or negative depending upon whether 4, , is less than or greater than the
distance to the caustic, 4,,. If the point (7, 8) is restricted to lic on a particular refracted
ray specified by the angle of incidence a == sin ™' 54, 5, £(0, 1) and Snell’s Law, then on this
ray, as d,, increases, five cases can be considered and discussed in terms of the physical
description given at the beginning of this section. The cases are:

(i) (r, O)&R,, d,, < hy,. 5o 1s the only zero of fj (s; r, 6) on (0, min(r/c, 1)).

(ii) (r, 0)eR,, d,, < by, and two zeros exist s, and s, , §; > 59, where f;(s;; r, 0) <0.
(i) dy, = hyp, f1(565 1, ) =0, (s, 1, 0) <O.
(av) (r, 0)eR;, d,, > h;, and two zeros exist s, and s,, 5o > 5, fi {s; 7, ) > 0.

(v) (r,8eR;, dy, > hyp: S only zero.

For each of these cases f;, (so; r, 0) is given by equation (28). It is assumed that s, , 5; and s,
are sufficiently distinct that the method of stationary phase can be separately applied to the
three points. Hence, the solutions found for cases (ii) and (iii) do not apply as d;, — #;,,,
which is why case (iii) must be considered separately. In all the cases except (iii), the points
of stationary phase are of order 1. The method of stationary phase is applied and the
following asymptotics are found for af, (r, 6, w):



+ ~ for d,, = h
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H”’(So’r) am ioty '
\/[f (5057, 0)] e for (i),

Hlp(SOs r)\/ Hlp(sl’ r)\/ iwfa,(s1;r,8) .
- uut“, + L EACHS , for (11)
—io i, (50”' )| /4, (sl,r 0|

Hlp(S05 r)\/ t Hlp(s2’ ")\/ Sa,(52;7,0) .
eiotir giofails2ir6) for (iv).
|f (SO9r30)| —iw If (SZ’r’O)l
(29

and

H“,(So, r eiwtip
\/lf (S09r99)] fOI' (V)s

as w— 0, d;, >cos f,0>0.
Case (iii) has a higher order stationary phase point. Its contribution is asymptotically
Hlp(so’ r)ew)np-i-m/lt 27'[

w*/ \/I (03 by )] 3T213)

ulp(hlp,w) as w — + 0. (30)

Equations (25, 29 and 30) together with the Watson-type lemma imply for 6 > 0

u,p(r 0,1) ~ — H“,(so,r)\/l—(—)| H(t —t;,) ast—ty,, 31

So5 1,

dy, < cos f. And for d,, > cos B,
4 2nd 1/2
H,y (505 ) (A) H(t —t,,), d¢R,,
hl _dlp
2mhy, \M2 -2\

H ; ———") H(t—1t,) —H ; ( ) In|t — ;r 0,
0057 (222 G 1) = i) ()l = s, 0)

for d,,eR,, dy, < hyp,

2rH, (503 1) ( 6
302/3)I5/6) \| fa1(s05 hyp)|

1/3
) [, — D)V H(t, — ) + /3t — 1,)" 5 H(t — 1,,)),
1p»

1/2 211 1/2
Hl,,(sz;r>( ) H(t = fu,(52: 7, 0)) — Hy (503 ) (-————) |t - 1,,]

2
48251, 1)) n(dlp—hlp

for d,,eR;, di, > hy,p,
244,

1/2
_ Inft —t,,|, d,eR5,
n(dlp — hlp)) | lpl 1ip 3

d
where ﬁ
L ds

—H, (50} 1) (

=0

S = 8g, sl, SZ

> S; > 80> S, (32)
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The physics of this solution is clear. For d,, < cos §§ the solution along the ray given by «
(angle of incidence) =sin™' s, is a nonsingular step function. As d,, increases the ray
reaches the region R, (see Figs. 4 and 5) in which there are two rays per point. The second
ray, specified by o’ = sin™! 5, has already touched the caustic and propagates a logarithmic
singularity at its wave front which arrives at the point (r, ) at time t = f3 (s,; r, 8). d;, con-
tinues to increase until it is at the caustic, d;, = h;,, where a singularity of order (¢t — t,,) 7"/
is calculated. After touching the caustic, the ray is again in a region where there are two
rays per point; however, this time it is the ray « =sin™~'s, that has touched the caustic
and propagates a logarithmic singularity. Lastly, the ray continues into Rj, another region
in which there is only one ray per point and since it has touched the caustic it has a logarith-
mic singularity at its wave front. This logarithmic singularity at the wave front agrees with
that found in Ref. [3] where methods (Poisson’s integral representation of the solution to
the wave equation) analogous to those used in Friedlander’s book[5] were used to investi-
gate the singular nature of the solution. However, in that paper it was incorrectly concluded,
as one might from case (ii) by taking an improper limit, that the discontinuity increases
beyond bounds like (h;, — d,,) "'/ as d;, — h,,. Actually, Friedlander’s book[5] discusses
the nature of the singularity in the vicinity of the caustic for acoustic waves with a result
analogous to that found here.

The right hand side of (32) is written symbolically as

Q (Hlp, 5o M, tlp)
24 »
where H,, is a refraction coefficient,

o specifies the refracted ray since

a(angle of incidence of external ray) = sin™’ 5.

B(angle of refraction of internal ray) =sin™* sy ¢,
dy, is the distance along the refracted ray from where it was generated at the

interface to the point (r, 0),

h, , is the distance along the refracted ray to the caustic, and

t;p is the time of arrival of the wave front traveling along that ray.

Thus for 6> 0,

— Hyp(85.7) f:rwrf—H(f~r1p), for d;, < cos B,
-*( 0 t)~ {J‘dz(SO;raO)I
ulprw » d _‘/1 (33)
Q(HlpwsOa l;:_.,l.f.’t!ﬁ), fordlp>COS[)J.
14

Recall that (33) is the contribution from the term ¢***? in (16). The role of the neglected
term e ** in (16) is now clear. Since points of stationary phase existed only for § > 0 for
e's9, e~ 5% will have stationary phase points only if @ < 0. Thus the solution for negative 0
comes from this second term e ™ ***%, hence

@Y ain(r, 0, 1) = &?wi:)(?‘ , 0, 1). (34)

‘When 6 = 0, both terms e**? and e "% contribute to the solution. However, since s, , the
point of stationary phase, is zero, an end point of the interval [0, r/c), each term contributes
only half as much. Thus the result is the same as in (33) for 6 = 0.
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Analysis for ¢ > k,

The following notation is adopted with regards to refracted and reflected waves. The
subscript 1 or 2 implies that the solution applies to the inner or the exterior region, respec-
tively. Subsequent subscripts of p andjor s yield the “ray history” of the wave and its
type, P or SV (shear vertical wave) in the following manner. When the incident exterior P
ray strikes the interface it generates refracted interior P and SV waves which will have the
subscripts 1p and ls, and the reflected exterior P and SV rays with subscripts 2p and 2s.
When the 1p ray strikes the interface after traversing the inclusion it generates rays in the
interior denoted by the subscripts 1pp (reflected P wave) and 1ps (reflected SV wave) and in
the exterior denoted by 2pp (refracted P wave) and 2ps (refracted SV wave). All reflected
and refracted rays may be denoted in this manner. In addition, the above subscripts will be
used to denote quantities that are associated with a particular ray. d, # and ¢ when sub-
scripted have the following meanings:

d is the distance along the ray of interest from the interface where it was generated to
the point (r, 9).

h when positive, is the distance along the ray to the caustic, i.e. (r, 8) is on caustic when
d=nh.

t  when subscripted, is the time of arrival of the wavefront propagating along the ray.

Examples of these are d,,, &, and 1,, of the previous section.

For ¢ > ky, the directly refracted P rays diverge on their first pass across the inclusion.
However, when they strike the interface for the first time the reflected P and SV rays that
are generated converge and form caustics. The following discussion of the generated P rays
and their focusing parallels that given earlier for the case ¢ < 1.

Using the fact that when a P ray reflects from an interface the angle of reflection equals
the angle of incidence and Snell’s law, the envelope of converging reflected P rays is depicted
in Fig. 6 where, in addition to this caustic, several generating refracted/reflected P ray pairs
are shown.

Consider how the solution varies along a reflected ray. d, ,, is the distance traveled along
the refiected P ray from the interface where it was generated to the point (r, 6) and 4y,

Caustic

(1pp)rays Incident rays

//

Vs

Refracted (1p) rays

Fig. 6. (1pp) Rays and caustic for ¢ = 15, 27 > 0 > 0.

1JSS Vol. 10 No. 12—B
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1s the distance along this ray to the caustic. From Fig. 6 it is clear that for 6 > 0 there are
two regions where (r, 6) might lie:

(1) d,,,suchthat @ < 7. In this region there are two rays per point, one that has touched
the caustic and one that has not. Call the collection of all such points for all once
reflected P rays R} .

(2) d,,, sufficiently large so that 8 > m, then there is only one ray per point and it has
touched the caustic. Call the collection of all such points R%.

R% and RY are portrayed for 6 > 0 and ¢ = 1-5 in Fig. 7. R and R} are analogous to R,
and R; discussed earlier and shown in Fig. 4. Points contained in R% and R¥ experience
logarithmic singularities in stresses associated with the arrival of wave fronts that propagate
along rays that have touched the caustic. Hence, from Fig. 6, it is clear that the interface,
r = 1, experiences logarithmic singularities for sin™'(1/c) < 0 < 2r from positively propagat-
ing reflected P waves and for —2n < 0 < —sin”!(l/¢) from negatively propagating waves.
Thus, every point of the physical interface experiences a logarithmic singularity from waves
that have reflected once.

X

Fig. 7. R¥ and R% for 2w >80 0and c=1'5.

u*t,, and of,, are the contributions to the radial and angular velocity from this once
reflected P ray. It is found that for 4,,, < cos 8

[qup(r’ 0» I)] ~ [Q(Hlp '611,S0. (qlpp—hlpp)/;'lpp‘ tlpp) ] (35)
&1 ,p(r. 0. 1) Q(—tany - Hy," 8.1, 50 (dpp — M pp)Aipps tipp)

as t—1,,. Hy, and 8, are given in (20) and (19). s, is such that
0—y+3p—a—n=0, (36)

where «, B and y are given in (22). The geometric significance of (36) is analogous to that of
(21). d,, equals cos § — r cos y and h,,, is equal to cos f{2c cos & — cos f8)/(3¢ cos x — cos )
and is always less than cos ff, and, hence, focusing occurs for all rays. In addition,

Afpp = I COS 7 €OS & c0s /(3¢ cos o — cos fB)

ipp
and

dlp,,+2cos/3

c

+d, — 1.

tlpp
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For d, ,, > cos f, all of the reflected P rays have focused and have a logarithmic singu-
larity at the wave front, hence for 4, ,, > cos B it is found that

[ﬂ”’]~[l ]H (56:1) 8 (s)\/—ali-—lnlt—t | ast—t 37
i):r” tan 'YI 1p\°0> 11\°0 n(dlpp _ hlpp) 1pp 1pp

y" =sin~!(sq c/r) is the supplement of y. By comparing these expressions with those for
uaY,, it is clear that §,,(s,) acts as a reflection coefficient.

The first singular shear waves to reach an interior point are the reflected SV waves
d’fps and 7, which are generated when the refracted dilatation wave strikes the boundary
for the first time.

Analogous to equation (35) it is found that

d s h s
Q (Hls by — b1), 50, 2 T Mips. ,m)
u* Adps
]~ (39)
S d _ h
v Q(Hls'(bl _511).C0tXas0»£/{_&,t1ps)
1ps

as t —ty,, for d;,, < cos { where s, is such that
—x+{—a+86+2—7=0,

a =sin"!s,, B =sin"(so/c), x = sin" (o c/kyr),
¢ =sin"!(sq c/ky).

Also,
H - oo 5hy (m1mk1/c)1/2’
1s rogo \2mmy,,.
by(s) = {4se,(my;cmy, . + s2) — 4s3(2m1,c my, + pey) — 2se (e, + 2my ;. my,)
+ 2us(e,e, + 4s°my,.my )} /b,
where

b 1/2
bo(s) = — 0o 5bo(s) (ml mkl/c) )

r d;0(s) 2rmy e

In addition,
dyps =cos { —rcosy,
hyps = (2¢ cos a — cos B)cos® {/[(c/k;)cos a cos B + cos {] < cos ¢,
Aips = r cOs y cos a cos ff cos {/[(c/k,)cos a cos f + cos {]> 0,

tlps=k—l%+2£ﬂ+d1 — 1.
¢
Lastly, e,, m, and §,, are given in (19).
In the exterior region two types of waves can be singular when ¢ > k&, : reflected waves,
and waves refracted into the exterior by internally refracted waves.
When «, the angle of incidence of the exterior P ray, equals sin~(1/c), Snell’s law, (14),
implies that f, the angle of refraction of the interior P ray, is 90° and hence this ray is
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critically refracted. This situation, in a simpler physical context, is discussed briefly for
acoustic waves in Friedlander’s book[5]. As is noted there, the reflected waves experience a
logarithmic singularity at their wave fronts when o > sin”'(1/c). Mathematically, the treat-
ment of these waves is analogous to those of previous sections with the difference that s,
the point of stationary phase, is greater than 1/c. As in all the previous cases, s, = sin~ ! a.
Since for critical refraction sin « > 1/c, additional asymptotics given in Ref. [11] must be
used to determine the asymptotic behavior of @3, and 5"2"?, the double Fourier transforms
of the radial and angular components of the reflected wave form dilatational velocities.

When « > sin”!(1/c), these asymptotics and the method of stationary phase imply

[Egp(r, 6, w)] 90 HZP(S.O)eiwrzp \/ cos o [CF)S 5] a5 - oo, (39)
Oy,(r, 0, w) —iw 2d,, + cos a |sin d

where
H,,=H}, + iH},
HIZzp =(Cor Cig + Co1 CiD/(Cig + C1p)
Hép =(Co1Cyir — Cor C1 DI(Cir + Cip)
where for se¢[l/c, ky, ], only the interior P wave is critically refracted, and

kyk,\?
Cor(s) = s*(e3 — 4s’mym,) — 2ue s (e — 2mymy) — p ( 1622) MMy .

—plei(mymy, — s%),
kK3
2 1
Cor(s) = m1/c[mk1/c(e§ - 452m1mk2) - 4ﬂmk,/c5 (e — 2mymy,) + umy, ——62

'_4S2.uzmk,/c(mlmk2 - SZ)L
% 2
2
Cyr(8) = s%(e3 + 4s*mym,)) — 2ue s(e; + 2my,my) + p —7 MM
+ prel(mymy, + s%),

Cis) = ml/c[mkl/c(e§ + 452m1mk2) - 4#52mk,/c(ez + 2mymy,)
klkZ 2 242 2
+ umy, — + pldscmy (momy, + 57)].

However, for se[k,/c, 1), both the interior P and SV waves are critically refracted, and

Cor(s) = (5'2 - ml/cmkl/c)(e§ - 452m1mk2) + 252#(6’1 - zml/c mkx/c)(ez - 2mymy,)

+ u2(4s2m1/cmk1/c - e%)(mlmkz - 232),

kko\ 2
COI(S) =Hu ( IC 2) (mkzmllc - mlmkz/c)a

Cir(s) = (s* — ml/cmkl/c)(e§ + 452m1mk2) — 25%p(e; — 2my. my ey + 2mymy,)

+ p¥(e} — 452”"1/cmk,/c)(mlmk2 + 52,

2

k. k,\2
Cils) = p ( lc ) (my, my e + mymy ;).
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m,, e, and e, are given in (19). In addition, s, is such that
—20+6+6=0 (40)

where
a=sin"ls,, & =sin"(so/r), o> sin(l/c).
Equation (40) has a simple ray interpretation where o is the angle of incidence and 6 is the
angle between the reflected ray to an exterior point (r, 8) and the radius vector r. d,, is
equal to rcos 6 —cosx and 1, equals d,, + d; — 1.
The Watson-type lemma and (39) imply

[u;p(r, 6, t)] \/ cosa [cos 5]
~ O _—
03,(r, 0, 1) °\ 2d,, + cos a |sin §
R 1 In
Hy (so)H(t — 15,) + H3,(s0) pn [t —topl 1 ast—t,,, (41)
for « > sin~!(1/c). For « and 0 negative the evenness and oddness of a;"p and 73, is invoked.

The asymptotic behavior of the reflected shear velocities u%, and o3, are similarly calculated
and are

0ok, COS @ COS K [sin s]

I:a;s(r’ 0, t) cos g

.
b2 (r, 0, t)] - Jé (08 &+ cos k) + cos®

In
HSGoH( = ) 4 HL6D = tl] a5 120, @)

for o« > sin~!(1/c). Where s, is such that
e+0—a—xk=0,
a=sin""s,, Kk=sin"Y(so/k;) and & =sin"!(so/rk,).
Also,
H3(5) = (gor Cir + 91 CiD/(Cir + C3;
and
H34(s) = (9or Cir — Jor C1D/(Cix + C1).
If 5o e[l/c, k,/c] then
Gor(s) = —25(s%e; — pe (25> + e,) + ple}),
Goi(s) = —dsmy my [e; ~ 25*(1 + w1 — p).
If 54 elky;., 1), then

Jor(s) = dsey(my;.my ;. — s%) — dspu(2my .y, e — )28 + ex)+ 2ﬂ25(452m1/c Mye,c — €3),
Jor(s) = 0.
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Physically this is analogous to the reflected P ray, where is the angle of reflection of the
SV ray and ¢ is the angle between r, the vector to the point of interest, and the reflected SV
ray. Also,

dy,, =rcose—cosk,
Irs =k2d2s + dl - L

The above applies for a > sin~?(I/c). It is of interest to note that when transitional
asymptotics for the Bessel functions are used for the cases s, = 1/c or s, = k. the same
results are found as those given above. Hence, (41) actually holds for sin” *(l/c) <«
< sin”!(k,/c) and (42) holds for sin " (k,/c) < « < 7/2.

Lastly, as representative of singular waves that are refracted into the exterior by internally
refracted waves, the contributions of 43,,,, 93,,,, U3 ,,s and 3,,,, the dilatation and shear
waves generated when the refracted P ray strikes the interface for the second time, are given.
Recall that the interior P wave focuses after striking the interface for the first time and has a
logarithmic singularity at its wave front the second time it strikes the interface. Thus, it is
found

-
U2 pppl7s g, t)] Oo [COS (5]
~—H In|t—1t fot, . 43
L'J;ppp(r’ 6,1 n prp(SO) sin 0 Il| 2“’"' as T = lappp (43)
and
. % .
u, s(rs 05 t) Og —sin g
{53:;0, g, t)] ] HZPPS(SO)[ cos s]lnlt = Lapps| as L= Lypps- (44)

In (43), s, is such that
—20+6+6+4p =2n
and in (44), s, is such that
—a—k+e+0+4f=2n

where a, f, J, ¢ and « are given in (40) and following (42). In addition,

1/2
cos B 14
H, L= el (FYRR PR IP) ) (N
PPPls=sg COS,B ()10
2d5 ppp (2c - +4dccosa —cos f
cos o
and
k, cosacos k
H29P81s=so = COS o cos o ]!/?
[cos K(d; pps + €OS K) (40 cos B - l) — s 7:]
511
) ;3_0 (o1 — 902) | s=s0
1
where

¢y (5) = (my,emy, e + $2)(e3 — dsPmymy,) — 257 pu(2my . my, o + €1) (e — 2mymy,)

272
ukik; 2,2 2 2
+ —z (my .My, — my, o my) — pi(ey + 4s mymy, ) (mymy, — §°),
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c34(8) = (s* — m1/cmk1/c)(e§ - 452m1mk2) + 2s2.u'(2m1/cmk1/c —e)e; — 2mymy)

pk ks 20,2 2 2
T2 (myemy, + mkl/cml) — pi(ey —4s mlmkz)(mlmkz —$%),

Go1(8) = —(myy . my . + s%)4se, + pus(4s® + 2e)(2my .my o + €)
—/,LZZS(ef + 4s2mllcmkl/c)a
Goals) = (mycmy o — sH)dse, — pus(4s® + 2e)2my .y — €;)
‘25#2(6’% - 4s2m1/cmk1/c)’
and m,, e,, 8;;, 0,, are given in equation (19). Also,

dsppp =T COS O — COS O
dypps = COS & — COS K
4cos f
Lappp = d2ppp + c +d —1

dy,ps 4 cOS
tZPps: :;p + ﬁ

+d — 1,
where these distances and times have the usual physical meaning.

Additional results

The following results are discussed in detail in Ref. [11].

(1) By considering the radial component of velocity in the interior after its wave front
has reflected # times from the interface. it is found that for n large the point where the ray
touches the caustic asymptotically approaches the midpoint of the ray and hence focusing
takes place as far as possible from the interface. Also, for n large, the wave front alternately
focuses after an odd number of reflections and unfocuses (i.e. has a simple step discon-
tinuity at its wave front) after an even number of reflections as the wave propagates in 6.
And lastly, the magnitude of the coeflicient multiplying the step discontinuity/logarithmic
singularity decreases as |d|" where |d| < | because of energy lost into the exterior at each
reflection. Hence, it is clear that the effects of later arriving waves which result from a large
number of reflections are not as important as the effects of those that have reflected only
a few times.

(2) By use of the convolution theorem and the solution of the previous sections it can be
shown that if the incident stress pulse had been continuous instead of a step function then
all of the logarithmic singularities would instead be bounded functions. Thus a necessary
condition for the existence of a propagating infinite discontinuity in stress is that the incident
stress pulse have at least a step discontinuity at its wave front. A physical stress pulse is
always continuous; thus, the results found here are to be interpreted as a limiting case as
the rise ume of a continuous incident pulse becomes small. In fact, it is for this reason that
the coefficients which multiply the logarithmic singularities are important. As the rise time
of the incident stress pulse becomes small, the focused response in the neighborhood of
the wave fronts, while still finite, are proportional to these coefficients and, hence, they
determine relative stress levels.

(3) The contributions to the velocity of a point on the interface from the diffracted
dilatation and shear waves and the Stonely (Rayleigh-like) interface wave were evaluated[11]



1356 J. H. GrIFFIN and J. MIKLOWITZ

using an alternative representation of the solution found by exchanging the Fourier integrals
of (12) for a residue type evaluation. The results were evaluated asymptotically for large w
and were found to be of small order w ™! and hence continuous at their wavefronts from the
Watson-type lemma. By continuity at the interface, any waves refracted into the interior
also have a continuous wave front and hence, as mentioned above, cannot after focusing
propagate an infinite stress discontinuity at their wave fronts. Thus the effects of these
waves compared to the focused, refracted waves are negligible.

10.
11.
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AobctpakT — Obcysxaaercs 3aja4a mwIockoi aedhopMaumy 1T UMITYJI5CA HaIIpsDKEHMH, yaaps-
FOLLEro YOPYroe Kpyriioe UHIMHIPUYECKOEe BKIIIOYEHHE, IOTPYKEHHOE B OECKOHEYHOH ynpyroii
criolHoM cpene. TIpUHATHIA METOI ONPEENSeT CHHTYISPHOCTH NpeobnafarouifdXx Hanps-
KEHHUH, KOTOPble BO3HHKAIOT Ha GpPOHTAX BOJIH OT (POKYCHPOBKH BOJIH IPEJOMJICHHBIX BO
BHYTpeHHOIi 06macTu. HaxoauTcs, yTo HeoOXOAMMBIM H TOCTATOYHBIM YCJAOBHEM AJISI CYLIECT-
BOBAH¥S CUHTYISAPHOCTH PACIPOCTPAHSIOLIEFOCS HaNpsKEHUS SBIAETCS (PAKT CTYNEHLYATOTO
pa3pbiBa MaJalouIero UMIyIbca Ha ero ¢ponte. Onpenensercs noapobHo mopeneHue Gppoura
BOJIH JJIsi HECKOJILKO TEPBBIX BOJIH JABJICHWUSA W COBUIa MO HampaBlieHHH dokyca. VkazaHo
TaKkxe, 4YTO 10DaB/IEHHE OT APYTMX BOJIH ABISETCH MeHee BaXkKHbiM. Bo BHEIIHeH obmacTu
HAXOOHTCS, YTO B OONBIIMHCTBE COCTABIEHHLIX MATEPHANTOB OTPa)K€HHble BOJIHBI HMMEET
CHHTYISIPHOCTb Ha CBOHX ()pOHTaxX BOJIH, KOTOpas 3aBHCHT OT Yria OoTpaxeHus. [daercs,
TaKxe, MOAPOOHO MOBENEHHE HECKOIBKO ITEPBBIX CHHTYIAPHBIX MPOIYILEHHBIX BOJIH.

AHaJIN3 OCHOBaH Ha MPUIIOKEHHM JIeMMbI THIIAa BaTcoHa, pa3BHHYTOH 31eCh, H HA MeTOJeE
®punnangepa. JleMMa OTHOCHT ACHMITOTHYECKOE MOBENEHHME pelleHHs Ha GPOHTE BOJIHBI K
ACHMITTOTHYECKOMY TIOBEIEHHIO ero npeobpasoBanus dypbe no BpeMenH, s Gonsiinx
3HaveHul mapamerpa npeobpasosaHus. [lpumensercs merton Ppuananoepa, ¢ UETBIO
[IPCACTABIICHHUS DEIUEHHS B TEPMUHONOTHUM (OpPM YIJIOBO pPacHpOCTPAHAIOLIMXCS BOJH.
MeToa npuMeHsieT MHTerpaibHble IpeoGpa3oBaHisi, Kak Mo BpeMEHH TaK W MO KoopAaHaTe
o okpyxkHocTH 0. OnpenenseTcs aCHMNTOTHYECKHH MHTerpan WHeepcuu 0 ansi Gonblyux
3HAYEHUI TTapameTpa npeobpa3oBaHUsl HO BPEMEHH, ITyTEM TMONXOSIIMX ACHMOTOTHMK IS
dyukuuit Becceans u Iankens M MeToma CTauMOHapHOi ¢asbl. [lanee NpUMEHAETCS JiIeMMa
THNa BaTcoHa, ¢ UeNbio ONpenesieHUs PeleHHs Ha GPOHTAX CHHIYJ/TAPHBIX BOITH.

Boob6ute, nemMma tuma Batcona mpurogHa K 3amadaM, KOTOPBIE BBI3bIBAIOT CHHIYJISPHbIE
Harpy3kd ¥ (POKyCHpPOBKH, B KOTOPbIX SBJISIETCS BaXKHbIM MOBeAeHMe (PpoHTa BOIHLI DTO
NaeT MoBeJeHHE (POHTOB CHHTYIAPHBIX BOJH, HO TaK WJIM WHa4ve, CHHTYJIpHAA BOJIHA
OKa3bIBAETCA NIEPBOi, KOTOpAs MOSBIACTCS. ITO IIpUMeHeHHe 06001aeT MeTon ®pHiananaepa
Ha BHYTPEHHBIN paioH ¥ QU3MYeCKH OOBACHAET, NOJyYeHHOE NMPENCTABIEHHE C TOUKH 3peHUsI
TEOPHH H3ITyYEeHHUS.



